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Abstract

There exists a number of image similarity search systems that do retrieval on
the whole image content. In this thesis an efficient and flexible implementation of
a content based image retrieval system that works on fractions of an image, the so
called regions, is discussed.

The thesis presents two correct and fast algorithms that find similar images to
arbitrary complex queries. Using a filtering step these algorithms perform signifi-
cantly better than other correct algorithms.

In this work we describe the implementation of a region based image retrieval
system in ISIS, the multimedia data retrieval framework of ETH Ziirich. It inte-
grates the search algorithms with region and feature extraction.

Experiments have shown that the system may return answers to even complex
queries in an acceptable time frame and that the use of regions can improve the
query results compared to the former system that only supported searching on the
whole image or on static regions.
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Chapter 1

Introduction

1.1 Multimedia Information Retrieval

In the last couple of years more and more information has been published in com-
puter readable formats. In the meanwhile much of the information in older books,
journals and newspapers have been digitized and made computer readable. Big
archives of film, music, images, satellite pictures, books, newspapers and magazines
have been made accessible for computer users, some of them are open to the public,
e.g. the Corbis image library | | or the archive of the Neue Ziircher Zeitung
[Ze].

One of the enabling technologies for these huge multimedia libraries is the in-
ternet. A typical web page is a multimedia document, it contains images, text,
sometimes video or sounds. A study of BrightPlanet assumes that the internet con-
tains about 7500 TByte of data including private and dynamically created pages
[ ]. This huge number of potentially available multimedia data has the draw-
back that we often don’t find the information we need, since we do not know where
to look for it. The huge amount of information tends to become a data graveyard,
information that is there but is never used, because no one finds it.

Computer science research has early addressed this problem. First approaches
concentrated on text retrieval since in the early days of the computer, textual
information has been the most widely used media type. When the internet and
digital image libraries became more and more popular, the computer scientists
tried to extend the text retrieval to images. This was done by indexing manually
entered textual annotations of the images. This human interaction has proven to be
inefficient and slow. Therefore automatic annotation algorithms have been proposed

[Sax01].

1.1.1 Content Based Image Retrieval

When the manual annotation of images became more and more unfeasible, new
approaches became popular that use the raw image data and statistics and trans-
formations thereof to perform similarity search. The user of such systems either
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provides an image that is similar to the one he is looking for or draws a sketch of it.
The system then compares the content of the query image with the content of all
images in its index and returns the images that are most similar to the query image
regarding some features as texture, color or shape. Most of these systems provide
a means of refining the query (so called relevance feedback) in order to get better
results in an iterative process.

1.1.2 Region Based Image Similarity Search

One of the main drawbacks of standard content based image retrieval systems is that
they calculate and compare features for the image as a whole. Most pictures don’t
contain just one object in it. There are typically a number of regions in the image
containing different objects, like a house, the sun, water or a tree. Newer approaches
take this into account by segmenting the image into homogeneous regions. The
search process explicitly compares the similarity between the regions of the query
image and the regions of the indexed images.

A key prerequisite for a good region based image retrieval system is a robust
segmentation algorithm. A segmentation algorithm takes an input image and clus-
ters pixels of this image that seem to be similar with respect to some feature (e.g.
color, texture or shape). The result of this clustering phase is a division of the image
into 5 to 30 regions that each corresponds to an object or subject in the image.

1.2 ISIS: Interactive Similarity Search

In several projects in the past, the database research group at ETH Ziirich has de-
veloped a prototype system called ISIS (Interactive SImilarity Search) that supports
interactive image similarity search on a PC cluster | ]. The retrieval part of
the system is strongly based on the VA-File, a simple and efficient indexing and
searching data structure that is based on approximations. In order to improve the
retrieval effectiveness, complex similarity queries consisting of a number of reference
images, different feature types, textual attributes and predicates are supported. The
system uses relevance feedback for incremental query refinement.

1.2.1 The Retrieval Part of the System

Although the search on textual fragments - as used in most commercially available
multimedia retrieval engines - is very efficient, the retrieval quality is seldom sat-
isfactory. On the other hand, image retrieval systems that use numerous content
descriptors (textual and visual) provide accurate results, but only on a relatively
small data set.

The system developed at the database research group of ETH Ziirich aims at
enabling multimedia retrieval in huge image databases with more than one million
of images using the best descriptors available. The searching and indexing compo-
nent is based on the so-called vector approximation file (VA-File), which efficiently
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performs a nearest neighbor search to identify similar images for a given set of
sample images.

Figure 1.1: Two image of the same dog having a completely different background.

1.2.2 Motivation for this Work

The current system provides fast search on the image features extracted from whole
images or images with predefined, static regions. Unfortunately, this approach is
often not specific enough to describe the content of the images. E.g., take an image
that contains a dog jumping over a fence. If we were only searching for dogs, the
current system would hardly find the same dog standing on a rock (cf. figure 1.1).
The two images only share some color-textural features and the dog is not at the
same position in both images.

The system developed in this thesis first segments images into regions that
correspond to the objects in it. The search engine then looks for for images which
contain regions similar to the ones selected in the query image. In our dog example
the images are divided into regions of the dog and regions of the background.
The user can explicitly specify the regions of the dog to define his query. The
system returns images that contain this dog ignoring the background regions. Due
to the more precise queries and the finer granular regions, the system developed in
this thesis significantly improves the overall retrieval quality (precision and recall)
compared to the former system.
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Chapter 2

Image Similarity Search

The search for similar images in large-scale image databases has been an active
research area in the last couple of years. A very promising approach is content
based image retrieval (CBIR). In such systems, images are typically represented
by approximations of their content. Typical approximations consist of statistics
and fourier or wavelet transformations of the raw image data. This so called feature
extraction aims at extracting information that is semantically meaningful but needs
a small amount of storage. A detailed description of feature extraction can be found
in section 2.1.

The information gained by feature extraction is used to measure the similarity
between two images. All images are represented by a point in the high dimensional
feature space. Each extent of the feature corresponds to one dimension of the feature
space. A metric is defined to calculate the actual similarity between two of these
points. An overview of common metrics is given in section 2.2.

dim2“
PY L)
(]
® ® ]
® s °
o
@ Q\ © ®
\ @
e \ o % °
qe °
)
@
° ® ° o R
—>
dim1

Figure 2.1: The nearest neighbor in two dimensions.

In this basic model, the search for images similar to a query image g results in
finding the k nearest neighbors of ¢ (cf. figure 2.1). The model can be extended
to support more complex queries that can consist of more than one query image
and more than one feature type. Distance combining functions are introduced to
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combine the distances of the sub-queries into an overall distance. The extended
query model is explained in section 2.3.

For fast retrieval, an indexing structure based on the query model is developed.
In section 2.4 we present the VA-File, the sequential file based indexing structure
that is used in ISIS.

2.1 Feature Extraction

Feature extraction is a means of extracting compact but semantically valuable infor-
mation from images. This information is used as a signature for the image. Similar
images should have similar signatures. If we look at the Capitol shown in figure 2.2,
the white color and the texture of the building are characteristic properties. In a
similar way the sky can be described by its blue color. Further more we can take
the size of the objects on the image into account.

Figure 2.2: The capitol in Washington D.C.

We often divide the extractable features into primary features, i.e. the raw
image data and secondary features, i.e. features derived from this data. Secondary
features may be categorized into primitive features, i.e. features computed from the
raw image data, logical features, i.e. the identity or name of an object, and abstract
features, i.e. the environment in which or the cause why the image was made. In this
work we will focus on primitive features, since the extraction is relatively simple
and fast. The extracted features are usually stored in a n-dimensional vector, where
n depends on the type of the feature.

In the following subsections commonly used features are described. The ex-
traction algorithms for most of these features have been integrated into the ISIS
system.

2.1.1 Color

Color has proven to be a very discriminant feature for object recognition and im-
age similarity search on photographic images. Often, color histograms are used to
describe the dominant colors of an image. A color histogram consists of a fixed
number n of reference colors ri..r, that are usually equally distributed over the
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color space. For each pixel in the image the perceptually nearest r; is found and
the statistic on this reference color is updated (cf. figure 2.3).

— ik

Figure 2.3: The example of a color histogram.

If we use histograms, we often have to deal with very high dimensional vec-
tors to get a good description of the image’s content. Another problem is that
for histograms relatively complicated similarity measures have to be used, since
the similarity of two reference colors has to be considered. Therefore so called
color moments are preferable for image retrieval. In the L*a*b* color space for ex-
ample, the following moments are used: variance(L*), variance(a™), variance(b*),
covariance(L*, a*), covariance(L*,b*) and covariance(a*,b*), mean(L*), mean(a*),
mean(b*) [Web01].

2.1.2 Texture

Texture describes the direction and granularity of the structuring elements of a
region, e.g. its lines. Examples of simple textures are shown in figure 2.4. Simple
texture extraction algorithms compare the image region with predefined texture
patterns. More sophisticated algorithms use fourier or wavelet transformations to
extract textural features. In the case of fast fourier transformations, Gabor filters
are used to extract specific directions of the texture in the image (cf. figure 2.5).

Mz IF

Figure 2.4: Simple textures as they can be found in almost every paint program.

2.1.3 Shape

Shape features are mainly used for technical images where the number of colors
is small and the shape of the objects in the image is relatively well defined. One
approach looks at the directions in the image. The directions are found by extract-
ing lines of the image using an edge detector. Another approach does statistical
evaluation on the size of regions using underlying templates (cf. figure 2.6).
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Figure 2.6: Shape histograms using underlying templates [BI<I<97].

2.2 Similarity Measure

The similarity between two images (represented by their feature values) is defined
by a similarity measure o(q,p;) € [0,1]. Value 0 means no similarity and value 1
identity. The similarity is often derived from a distance measure §(q,p;). A high
value corresponds to a small similarity value and a small distance results in a
high similarity. In practice, a correspondence function h is used that goes from
h(0) =1 to h(cc) = 0 and h/(z) < 0. The similarity value is calculated as o(q, p;) =

h(6(q,pi))-

A widely used distance measure (metric) for uncorrelated features is the L,-
Norm. The formulas for three L,-Norms are shown in table 2.1. For correlated
features we use a quadratic function 6(q, p;) = (¢ — p;)T A(q — p;). The dependency
on the axes is taken into account by the matrix A.
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Li-Norm  Manhattan-Norm (g, p;) = Z;l:o lg; — pijl
Ly-Norm  Euclidean-Norm (g, p;) = \/E;l:o(qj —pij)?

Loo-Norm Maximum-Norm (¢, p;) = max?zo lg; — pijl

Table 2.1: L,-Norms

2.3 Query Model

With the extracted features and a similarity measure on them we have the basics
for similarity search. In the previous sections we have looked at the query as being
one point, i.e., one query object. In general this doesn’t need to be the case. If we
have only one query image the semantics of our query is very limited. In this section
we discuss the extension of the simple query model with one query point to a query
model that consists of multiple query images and a number of different features. A
detailed explanation of ISIS’s query model is given in | ]

One-Feature One-Object Query (Atomic Query) The Atomic Query is the
simplest type of query. It consists of one query image and one feature. To answer
the query we have to implement a nearest neighbor search in the feature space of
one feature.

Multiple-Features One-Object Query (Single Query) A Single Query con-
sists of one query image and a number of features. A big number of current
content based image retrieval systems statically combine a number of features
[ , ]. In our model we aim at allowing the flexible combination of
features. A simple approach would be to precalculate all combinations of features.
Obviously, this approach would increase the size of our index dramatically. A more
practicable solution is to combine the features at query execution time. This means
that all feature vectors are read in parallel. The combined vector is constructed in
main memory. To have a homogenous feature value space, it is mandatory that the
feature values are normalized. In our implementation gauss normalization is used:

T = i—j — 1, 05 being the standard derivation and p; being the mean value of the
feature vector’s j-th component. In the case of quadratic functions principal compo-
nent analysis is used to transform the space. In the transformed space the euclidian
metric can be used for distance calculations. The final distance is calculated using
a distance combining function. The definition of four distance combining function

is given in table 2.2.

One-Feature Multiple-Objects Query (Multi Query) A query with only
one feature, but more than one query image is called Multi Query. The implemen-
tation is straightforward: Determine the distance between the current data point
and each reference object and combine them using a distance combining function.
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Fuzzy Standard AND  §(a,b) = max(a, b)

Fuzzy Standard OR  d(a,b) = min(a,b)

Average (a1,...,an) = =>°0 1 a;

Weighted Average (W, ooy Wiy ALy ey Q) = D i Wi % Ay D gy W5 21

<

Table 2.2: Distance combining functions
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Figure 2.7: Schema of the general query model.

Multiple-Features Multiple-Objects Query (Complex Query) The most
general case, called Complex Query, is illustrated in figure 2.7. It consists of several
reference images. For each one a number of features can be used to describe its
content. This sort of query can be modelled as a group of single queries. It is
common that the same feature type is used for more than one query image. In this
case we have to make sure that the feature values are read only once and are shared
between the sub-queries.

2.4 Indexing Structures

To support fast similarity search and arbitrary complex queries, we need an appro-
priate indexing structure. Many CBIR systems use the R — T'ree | | and its
extensions (Rt —Tree | |, R* —Tree | |, M —Tree | ],-.). Even
though these tree based approaches are efficient in low dimensional vector spaces,
it has been shown that they are outperformed by a sequential scan through the
database if the dimensionality of the vector space exceeds about 10 [ ]

A new approach, the so called Vector Approximation File (VA-File), has recently
been developed at ETH Ziirich. It outperforms the tree based indexing structures
by explicitly taking into account that random access to a hard disk is far slower
than sequential access. It starts with a full scan through a file of approximated
vectors to find candidate nearest neighbors. The correct values of the candidate’s
feature values are fetched in a second step. With these values the correct nearest
neighbor can be found. This method reduces both the amount of data scanned and
the random accesses to the disk. There are two algorithms that can be performed
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on the VA-File each one optimizing either IO or CPU costs.

Algorithm 2.1 Nearest Neighbor Search Simple Search Algorithm. (Optimizes CPU
costs)

1. Let A be the list of vector approzimations and V the list of vectors, Vi let
a; € A be the approzimation of the vector v; € V, let C = {} be the candidate
set, let q be the query vector.

2. For each a; € A

Get a; from disk
If boundjpyer(a;) < k-smallest distance
Get v; from disk
If dist(vi, q) < k-smallest distance, add v; to C

3. Return the content of C

Algorithm 2.2 Nearest Neighbor Search Nearest Optimal Algorithm. (Optimizes
IO costs)
Sequential Access Phase

1. Let A be the list of vector approrimations and V the list of vectors, Vi let
a; € A be the approrimation of the vector v; € V, let k be the number of
nearest neighbors and q be the query vector, let B = {} be the set of the
k-lowest upper bounds, let C = {} be the candidate set.

2. For each a; ¢ A
Get a; from disk

Calculate the upper bound u; and the lower bound l; of the distance between
q and a;.

Insert u; into B and update B so that it contains the k-lowest upper bounds.
If I; < max(B), add object i to C.

Random Access Phase

1. Let W be the set of the k-best distances.

2. Sort C in increasing order of the lower bound of c;

3. While boundoyer(c; € C) < k-lowest calculated distance

Get v; from disk
Calculate the distance d between v; and q.
If d < max(W), add it to W.

4. Return the content of W
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Chapter 3

Region Based
Image Similarity Search

In traditional content based image retrieval, we take a signature for the whole image
(cf. chapter 2). In most cases, an image does not only contain one object. If we take
signatures for each of these objects, we can describe the image more accurately. A
simple approach is to divide the image into predefined regions, e.g., one region in
the image center and four background regions (cf. figure 3.1). The drawback of this
approach is that the partitioning of the image and the assignment of the regions
is static. An image that is not suited for the partitioning cannot be found easily.
Newer approaches therefore partition the image dynamically. They use a segmen-
tation algorithm to partition the image into homogenous regions. Segmentation
algorithms are discussed in section 3.1. In the ISIS system we currently use the
JSEG segmentation algorithm that is described in section 3.1.2.

Figure 3.1: Image with static regions

For each of the regions one or more features are extracted that are taken as
signature for that region. We can use the features that we have discussed in sec-
tion 2.1. Additionally, features that only make sense with segmented images can
be extracted. The region based features that have been implemented into the ISIS
system are presented in section 3.2.

During the query phase, the assignment of the query image’s regions and the
regions of the images in the database must be performed. Evidently, regions that are
similar should be matched. To calculate the similarity between regions, we can use
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one of the metrics defined in section 2.2. To find the "best” assignment, the distances
for all possible combinations of regions of the query image and the database image
must be calculated. This results in a so called distance matriz. A visualization of
the matching and distance calculation steps is given in figure 3.2. Algorithms to
find a matching are discussed in section 3.3. For the ISIS system we have developed
two fast algorithms to find a matching. We present them in section 3.5.

Segmentation Matching Segmentation

A

Distance
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«—

47=0.2314
«—

i
mafo 8913); ﬁﬁ
4,=0.3114

distance = wy - dq1 +wo - do + w3 - dg + wy - dy

Figure 3.2: The calculation of the distance using regions.

The query model that was introduced in section 2.3 can be adapted to region
based image similarity search. An additional step that calculates the assignment
of the regions has to be introduced. The updated query model is presented in
section 3.4.

3.1 Image Segmentation

The decomposition of an image into regions is the first step in region based image
retrieval. For this purpose image segmentation algorithms have been developed
which try to segment images into regions that correspond to objects or subjects on
the image. More formally, a segmentation algorithm defines an injective function

fseg :NXN—N, («T,y) = fseg(SUay) =r

The function assigns to every point P(z,y) of the image the region r it is contained
in.
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Even though humans can easily divide an image into objects, there are currently
no algorithms that can do this job correctly in all cases and as good as humans
would do. Computer vision research assumes that humans know the objects that
they see and do the segmentation according to this knowledge. Unfortunately there
are no algorithms so far, that can do object recognition without having segmented
the image previously.

Figure 3.4: Cows in the German black forest and the output of the JSEG segmen-
tation algorithm

In figure 3.3 you can see the skyline of Basel. A human would probably segment
the image into the Rhine, the Minster, some villas, a bridge, the Jura hills and
the sky. Even though the automatic segmentation finds some of the objects that
humans do, it still does not segment the image correctly. The bridge is divided into
seven regions and the second tower of the Minster is associated to the region of the
sky, just to mention two segmentation errors. If we look at figure 3.4, we can see
similar artifacts: The cow in the front is divided into several regions and on the
other hand, the cow in the background is in the same region as the grass around it.

There have been proposed several segmentation algorithms. Simple algorithms
just use the color of the image pixels and do a bottom up clustering (cf. sec-
tion 3.1.1). More advanced segmentation algorithms combine the bottom-up ap-
proach with some higher level top-down methods that look at the image as a whole
(cf. sections 3.1.2, 3.1.3).
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3.1.1 The k-means Algorithm

This algorithm clusters pixels that have similar feature values. We start with k
randomly chosen feature values mj...mj; and assign each pixel to the value m;
(¢ = 1..k) that is most similar to it. After this first step, we redefine m; as the mean
value of the pixels assigned to the former m;, i.e., we calculate the centroid of the
pixels assigned to the old m;. This clustering - reassigning m; phases are repeated
until a steady state has been established or a maximum number of iteration steps
has been reached.

This algorithm uses only low level features (color, texture, wavelet coefficients).
There is no top down view on the image. It does not deal well with smooth color
changes of the image, e.g. a sunset over the sea. One possible advantage is that
the pixels of one region do not need to be adjacent to each other as depicted in
figure 3.5.

Figure 3.5: Example of a segmentation by the k-means algorithm [L.WW00)]

3.1.2 The JSEG Algortihm

JSEG is an algorithm proposed by Deng and Manjunath [DMO1] that is based on
color quantization and spatial segmentation. The first step quantizes the thousands
of colors to about 10 to 20. An algorithm that takes human perception into account
is used. Each of the quantized colors is assigned a label. A new image is created in
which the image pixel colors are replaced by their corresponding color class labels.

Deng and Manjunath define a novel measure called J-value that is based on
statistics on the color classes. Calculating the J-value on a local area of the image can
indicate whether that area is at region boundaries or within a region. The higher the
J-value the more likely it is that the corresponding pixel is near a region boundary. A
small local window in which the J-value is calculated can detect intensity and color
edges whereas a large window is useful to detect texture boundaries (cf. figure 3.6
c¢) and d)). JSEG uses multiple scales (window sizes) to segment an image.

With the use of J-images, the algorithm can find points in the image that are
likely to be the region centers. From these ”"seed” pixels, a region growing is per-
formed in order to roughly segment the image. After this growing phase follows a
merging phase where regions of similar color histograms are merged into one region.
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Figure 3.6: Eight steps in the segmentation process of the JSEG algorithm: (a) The
original image. (b) Result of color quantization with 13 colors. (¢) The J-image
at scale 3. (d) The J-image at scale 2. (e) Result after segmentation at scale 3.
(f) Result after segmentation at scale 2. (g) The final result after merging. Figure
taken from [DNO1]

3.1.3 Algorithm of Felzenszwalb and Huttenlocher

This algorithm uses a graph theoretic approach, defining every pixel as a node of
the graph and trying to partition the graph into regions [F'H98]. The partitioning
is done in such a way that the resulting segmentation is neither over- nor under-
segmented according to the definitions given by the authors. Finally, for each pair of
neighboring regions the variation between regions will be larger than the variation
within regions. This principle ensures that local and global properties of the image
are used and that the segmentation has the desired property of being neither over-
nor under-segmented. Figure 3.7 shows an example of a segmentation performed by
this algorithm.

3.2 Region Based Features

For each region of an image one or more features are extracted. Common features
are color distribution and texture (cf. section 2.1). Besides the features that are
useful for traditional content based image retrieval systems, region shape and spatial
features can be extracted. It is sometimes useful to include spatial constraints in
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Figure 3.7: Example of a segmentation performed by the algorithm of Felzenszwalb
and Huttenlocher [FH9g]

the query, e.g., if you are searching for a house in the left half of the image and a
car in the right. In the current implementation of the ISIS system two new features
are implemented according to the suggestions made in [SC90].

Area: Area is given by the number of pixels of a region divided by the total number
of pixels of the image. We therefore have one dimension d for each region r
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It is recommended to use the euclidian norm for distance calculations:

Orrrs = | D (i, — djira)?

The variables height and width used above are the image’s height and width, respec-
tively. The function fseq(z,y) returns the region of pixel P(x,y) (cf. section 3.1).

3.3 Similarity Measure

In region based image retrieval, similarity is calculated as a weighted sum of the
similarity between the assigned regions. In order to find a matching, the distances
between regions must be computed. This is done using a metric (cf. section 2.2)
and results in a m x n distance matriz, m being the number of regions of the query
image and n being the number of regions of the database image.

When we have computed the distance matrix, an assignment of the regions must
be made. Generally there are four possibilities to do that:

1. We assign each region of the query image to exactly one region of the database
image (1:1)

2. We assign each region of the query image to one or more regions of the
database image (1:N)

3. We assign one or more regions of the query image to every region of the
database image (N:1)

4. We assign one or more regions of the query image to one or more regions of
the database image (N:N)

Possibility 2 and 3 are not sensible since they lead to an asymmetric matching.
Algorithms of category 4 return good results if the segmentation of the images
is not exact, i.e., if the same object is segmented differently in two images (cf.
figure 3.8). The problem is to find an algorithm that yields a correct solution, i.e.,
an algorithm that minimizes the overall distance. By now, no algorithm has been
proposed for region based image retrieval that computes a correct N:N assignment.
An incorrect algorithm that nevertheless returns good results is integrated region
matching (IRM). It is described in section 3.3.1.

In ISIS a perfect assignment of type 1 is used. Finding a perfect assignment is
a well studied subject in combinatorial optimization. It is known under the name
Assignment Problem (AP). In fact it is the calculation of a minimum weight perfect
matching in a bipartite graph. The vertices of the bipartite graph correspond to
the regions of each image and the similarity distance between them are the edge
weights. To solve the optimization, the Hungarian Algorithm can be used. A formal
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Figure 3.8: Advantage of N:N matching. Figure taken from [ ]

definition of the Assignment Problem and the Hungarian Algorithm are given in
section 3.3.2.

Unfortunately, the Hungarian Algorithm has a complexity of O(n3), n being
the number of regions. Since we have to calculate an assignment for every image
in the database, we have to expect high computational costs. To reduce the num-
ber of assignment calculations we have developed two algorithms that work with
bounds that are of lower computational complexity. Only for candidate images that
are likely to belong to the final result set the correct matching is computed. The
algorithms and the calculation of the bounds are presented in section 3.5.

3.3.1 IRM: Integrated Region Matching

Since segmentation is often not perfect, the usage of a 1:1 assignment seems to be
too strict. If we consider an image of a house where the house is segmented into
two regions and one where it is one region, we can only assign one of the two house
regions. The assignment solution called IRM, Integrated Region Matching, proposed
by Li, Wang and Wiederhold | |, addresses this problem by allowing to match
more than one region. Despite the problem that IRM does not guarantee to return
the optimal solution, IRM is not able to distinguish between an image with two
houses of the same style and an image with one such house. The algorithm can be
summarized as follows:

Algorithm 3.1 ITRM: Integrated Region Matching

1. Let p; be the significance of region i in image 1 and p;» be the significance of
region j in image 2. Let s; ; be the significance credit of the matching between
region i of image 1 and region j of image 2.

2. Set L =}, denote M ={(i,7):i=1,....m;5=1,...,n}.

3. Choose the minimum d; j for (i,j) € M — L. Label the corresponding (i,7) as
(i, 5.

4. min(pir, ply) — sir .

5. If pin <ply, set sy j=0,j# j'; otherwise, set s; y = 0,i# 1.
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6. piy — min(py, pjy) — pir-

7. py —min(py, ply) — pyr-

8 L+{({,"}— L.

9. If Y pi >0 and Z;LZI pj >0, go to Step 3; otherwise, stop.

For this algorithm to run correctly, p; and p;- must be set previously. There are two
propositions. The first proposition, it is called uniform scheme, is to set p; = 1/m
where m is the number of regions. The second proposition that is preferred by the
authors of [ |, is called area percentage scheme: p; is set to the percentage
of the image covered by region ¢. This choice of p; is less sensitive to inaccurate
segmentation than the uniform scheme.

3.3.2 The Hungarian Algorithm

The correct solution for solving the 1:1 assignment is the calculation of a minimum
weight perfect matching. We can formalize the problem as follows:

Definition 3.1 The Assignment Problem.

Given a weighted bipartite graph G(X,Y, X xY) with weights w(z;,y;). Without
loss of generality we assume that | X| < |Y|. Find for each node x; € X a distinct
node y; €Y so that the total distance

RS
d= Zw(azh Yj)
i=1

18 minimized.

Definition 3.2 The resulting set of pairs {(i,7)|x; is assigned to y;} is called the
minimum weight perfect matching in a bipartite graph or assignment.

Definition 3.3 The weights w(z;,y;) are defined by a |X| x |Y| matriz D that is
called distance matriz.

The best known algorithm to solve the assignment problem is the so called "Hungar-
ian Method”, published by Harold W. Kuhn [ ]. It is based on mathematical
theories developed by two Hungarians, D. Konig and E. Egevary. It is based on two
observations:

Observation 3.1 FEach node x; must be assigned to one and only one node y; and
vice versa.

Observation 3.2 In the distance matriz D a constant c can be added or subtracted
from all cost values in a column or all cost values in a row without having any effect
on the minimum weight perfect matching.
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Having made these observation we can look at the algorithm of Kuhn.

Algorithm 3.2 Hungarian Algorithm

1. Make the distance matriz quadratic by adding rows or columns that have zero
cost.

2. Find the opportunity distance matriz

3. Test for an optimal assignment. If an optimal assignment can be made, make
it and stop.

4. Reuvise the opportunity distance matriz and return to step 3

Finding the opportunity distance matrix We start with the distance matrix
D defined in definition 3.3 and subtract the smallest number in each row
from every row of the matrix and the smallest number in each column from
every column. This can be done due to our observation 3.2. By this step we
ensure that there is one zero in each row and column. The name “opportunity
distance matrix” comes from the fact that each position with a zero has the
opportunity to be member of the assignment.

Testing for an optimal assignment To test if an optimal assignment can be
made, we draw the minimum number n of horizontal or vertical straight lines
on the opportunity distance matrix to cover all the zeros. Each line should
cover as much zeros as possible. If n = max(|X|, |Y]), an optimal assignment
can be made.

Revising the opportunity distance matrix Find the smallest number s of the
actual opportunity distance matrix that is not covered by a straight line.
Subtract s from all elements of the matrix not covered by a straight line and
add this number to each element lying at the intersection of any two lines.

Making the final assignment To make the final assignment, first consider rows
and colums that have only one zero entry. Then go on and find an assignment
for all other rows and columns.

A very efficient implementation of the hungarian algorithm has been published by
Donald Knuth | |. Examples and a more detailed description of the algorithm
can be found in | .

3.4 Query Model

The query model for region based queries is similar to the query model for simple
content based image retrieval systems. The same types of queries occur. The main
difference is that we have to do the assignment of the regions.
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3.4.1 Atomic Similarity Query

In queries with one query point and one feature, we scan through all database
images. The assignment is calculated for the distance matrix given by the metric
that is used for the feature.

3.4.2 Single Query

A single query consists of one query image but multiple features. Since we want to
do the matching using all features and we want to support mixed queries that not
only contain region aware features but also legacy static region based features, we
have to distinguish four cases:

1. We have only static region based features

2. We have a number of static region based features and one dynamic region
based feature

3. We have only dynamic region based features

4. We have n static region based features and m dynamic region based features,
n>0m>1

In case 1 we can use the algorithms described in section 2.3 and do not have to
calculate a matching. Case 2 is quite similar, we first have to calculated the distance
for the object with the region based feature and can use the same algorithm as in
case 1. This holds because we don’t have to calculate a matching over all features.

a
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Figure 3.9: The distance evaluation scheme for single queries
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Conceptually equivalent to case 1 is case 3. It just consists of a number of
region based objects. The main difference is that we have to calculate a matching
over all features. First we calculate the distance matrices for all features. Then
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we combine the distances in every cell of the matrix using a distance combining
function provided by the user (section 2.3). The assignment is then calculated on
this combined matrix. The process is shown graphically in figure 3.9.

The most complex and most general is case 4. Since we have to calculate a
matching using all dynamic region based features, the calculation is done in two
steps. We first calculate the distance for all static region based features and as
last step add the distance for all dynamic region based features as a whole. This
is allowed since the distance combining functions are associative (see definition in
[ ]). Nevertheless, distance combining functions do not need to be commu-
tative and therefore we have to use two different instances of the same distance
combining function, one that combines the dynamic region based features and one
that combines the static region based features and as last entry the already com-
bined dynamic regions based features. This procedure is shown in figure 3.9.

To make it a bit clearer how to choose the two distance combining functions,
let’s take the non commutative weighted average distance combining function (cf.
table 2.2). If we want to weight feature 1 (static region based) with 0.5 and feature
2 (dynamic region based) with 0.3 and feature 3 (dynamic region based) with 0.2
we have to set the overall distance combining function to (0.5,0.5) and the region
based distance combining function to (0.6,0.4).

Figure 3.10: Making a matching using the regions of two reference images.

3.4.3 Multi Query

A multi query is a query on a number of images and one feature. In principle there
are two possibilities:

1. Calculate the matching for every image individually and combine these dis-
tances using a distance combining function.
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2. Merge all selected regions from all images into one "pseudo image” and calcu-
late the matching on this image.

If we look at the example given in figure 3.10 we can see that solution 2 is not
intuitive in most cases, especially if we use a perfect matching. Let’s take for example
an image with a red car as our query image ¢; and an image with another red car as
query image go. If we have a database image with exactly one red car we can match
it with one of the query cars. If the database contained another image with two
red cars, the algorithm can match both cars. By having matched more elements, it
results in a better overall distance even though we might have just searched for an
image with one car. The implementation of solution 2 is quite simple: just combine
all selected regions to a "pseudo image” and run an atomic query with this "pseudo
image” as query point.

If we take solution 1, the search can be done more intuitively, i.e. by using a
AND distance combining function we would find images that have regions which are
similar to the regions selected in all of the reference images. This would lead us to
solutions similar to that achieved by solution 2. Nevertheless we would be flexible
enough to choose another distance combining function that matches images that
are similar to only one of the reference images.

Reference images
Selected regions

Texture Features

Figure 3.11: Region based complex query

3.4.4 Complex Query

The most general case when we have several features and several reference images
can be handled in analogy to the case without dynamic regions (see section 2.3). A
complex query can be constructed as a set of single queries. Of course we have to
take our new version of single queries. Since it is likely that one or more features
are used for more than one reference image, the iteration over these features must
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be performed only once. Nevertheless the distance matrix calculation must be per-
formed independently for each query image. A schematic depiction of a complex
query is given in figure 3.11.

3.5 Indexing Structure and Search Algorithms

The index that we use in ISIS is a sequential file. We therefore need a sequential
algorithms to perform the image similarity search. A simple algorithm called ERASE
(Exact Region Assignment SEquential) has been proposed by Bartolini, Ciaccia
and Patella in | ]. It scans through the whole image database and calculates
the minimum weight perfect matching for every image. In the end the best images
are returned. The algorithm is formalized below.

Algorithm 3.3 ERASE
For each image in the database

1. Calculate the distance matriz
2. Find a matching
3. Calculate the distance of this matching
4. keep the best k distances
Return the best k tmages

It is easy to see that this algorithm has at least two properties:
Observation 3.3 It scans through the whole database

Observation 3.4 We have to calculate a matching for each database image

Looking at observation 3.3, the fact that we have to scan the whole database seems
to be a bad property of this algorithm and our sequential data structure. Weber,
Schek and Blott showed in | ] that other indexing structures, mainly MBR-
based indexing structures like the R-Tree | |, are outperformed by a simple
scan through the whole data set if the dimensionality of the data points exceeds
about 10. Since we use high dimensional feature descriptors, most of which having
dimensionality highly above 10 (e.g. 256 for color histograms), a sequential scan is
at least as fast as using a sophisticated indexing structure.

One additional advantage is the easy parallelize-ability and distribute-ability
of sequential indexing structures. Subranges of the whole index can be treated
independently by many computers (in the distributed case) or many parallel disks
(in the parallelization case). A more detailed investigation of the problem shown
for the VA-File can be found in | .

Since it seems to be inevitable to scan through the whole database, the two
algorithms presented in this thesis aim at minimizing the number of matchings
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computations to improve the performance of the query (cf. observation 3.4). Both
algorithms use a two phase approach where first an approximation for the match-
ing is built, resulting in a lower and an upper bound of the final distance. Only
for candidates that are likely to belong to the result, the exact distance is calcu-
lated using the Hungarian Algorithm implemented according to Donald Knuth (cf.
section 3.3.2).

3.5.1 Two Phase Region Search

The first algorithm presented here is called ToPhReSe (Two Phase Region Search).
It minimizes the number of matching calculations but needs additional random
accesses to the disk and additional distance matrix calculations. It is similar to the
Nearest Neighbor Search Nearest Optimal Algorithm described in section 2.2.

Algorithm 3.4 ToPhReSe
Sequential Access Phase

1. Let V be the list of vectors, let k be the number of nearest neighbors and q be
the query vector, let B = {} be the set of the k-lowest upper bounds, let C = {}
be the candidate set.

2. For each v; €V
Get v; from disk

Compute the distance matriz between q and v;

Cualculate the upper bound w; and the lower bound I; of a minimum weight
perfect matching using the distance matriz.

If I; < max(B), add (i,1;) to C and (i,u;) to B.
Random Access Phase

1. Let W be the set of the k-best distances.
2. Sort C in increasing order of the lower bound of ¢;
3. While boundoyer(c; € C) < k-lowest calculated distance

Get v; from disk
Compute the distance matriz

Calculate the minimum weight perfect matching using the Hungarian Algo-
rithm

Calculate the distance d between v; and q.
If d < max(W), add d to W.

4. Return the content of W

We have also built a version of this algorithm that caches the distance matrix in
memory. A quantitative analysis of the two versions of the algorithm is given in
section 5.1.
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3.5.2 One Phase Region Search

The second algorithm is called OnPhReSe (One Phase Region Search). It reduces
the number of times the Hungarian Algorithm is invoked, but it directly calculates
the minimum weight perfect matching if the vector is a candidate. This has the
advantage that we don’t have to re-fetch the vector in a second phase which reduces
1O costs. On the other hand this has the disadvantage that we have to invoke the
Hungarian Algorithm more often.

Algorithm 3.5 OnPhReSe

1. Let 'V be the list of vectors, let C = {} be the candidate set, let q be the query
vector.

2. For each v; €V

Get v; from disk
Compute the distance matrix

Calculate the lower bound l; of a minimum weight perfect matching using the
distance matriz.

If l; < k-smallest distance

Calculate the minimum weight perfect matching using the Hungarian
Algorithm (distance d;)

Add v; and d; to C.
3. Return the content of C

A quantitative analysis of this algorithm is given in section 5.1.

3.5.3 Bounds Calculation

The search algorithms demand easy computable bounds of the minimum weight
perfect matching. In this section we present two algorithms that calculate an upper
and a lower bound, respectively. Throughout this section we will refer to the example
given in figure 3.12.

Lower Bound The lower bound needn’t be a matching. It should be smaller or
equal to the final minimum weight perfect matching. In our implementation the
lower bound is calculated as the sum of the smallest min(nj,ng2) column minima
in the distance matrix as formalized in algorithm 3.6, n; and no being the number
of regions of the query and database image, respectively. An example is given in
figure 3.13. The algorithm has an overall complexity of O(n?) since the distance
matrix computation in step 1 is O(n?), step 2 is O(n?), step 3 O(nlog(n)) and step
4 O(n).



3.5 Indexing Structure and Search Algorithms 43

A B
C 01|04 B )
D | 02|06 A—-DAB—C=02+04=0.6
E | 0308

Figure 3.12: Example of a weighted bipartite graph, its distance matrix and its
minimum weight perfect matching.

Algorithm 3.6 Lower Bound

1. Let D be the distance matriz, let n1 be the number of regions of the database
image, let ny be the number of regions of the query image. Let m be the array
of the column minima.

2. For each column i of D find its minimum entry m;
3. Sort the array m in increasing order
4. lower bound = L - me(m’n2) m;, T = T(n1,n2) being a normalization value.

=1

Theorem 3.1 The lower bound calculated by the algorithm 3.6 run on a distance
matriz D is a lower bound of the minimum weight perfect matching calculated on
D.

Proof of Theorem 3.1 Proof by contradiction.

1. Both the minimum weight perfect matching and the lower bound of algorithm
3.0 consists of min(ny,n2) distances.

2. Assume, the lower bound of algorithm 3.6 is larger than the minimum weight
perfect matching.

3. = At least one taken distance m; is larger than the taken distance m; of the
minimum weight perfect matching.

4. Contradiction: Since we take the minimum in each column for m;, it is im-
possible for m} to be smaller Vi.
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A—-CANB—-C=01+04=0.5
Figure 3.13: The lower bound of the matching in figure 3.12.

Upper Bound The upper bound is calculated as a good matching that is not
the minimum weight perfect matching. It should be computationally simple to
calculate this matching. In our implementation we scan the distance matrix column
by column and match the smallest distance value of a row that has not yet been
assigned. The result could be improved by starting at more than one position and
finally taking the smallest distance.

The calculation is formalized in algorithm 3.7. Its overall complexity is O(n?)
since the distance matrix calculation in step 1 is O(n?), step 3 is O(n?) and step 4
has a complexity of O(n).

Algorithm 3.7 Upper Bound

1. Let D be the distance matrix, let ny be the number of regions of the database
image, let ng be the number of regions of the query image, let m be the array
of matched rows (initialized to false V' entries m;).

2. Without loss of generality we assume that we have more rows than columns.

3. For each column i of D find the minimum entry d; ; where m; is false. Set
m; to true, save j; = j.

in(ny,n2 . .
4. upper bound = % . Z?;uf(m n2) d; j;, T = T(n1,n2) being a normalization value.

Theorem 3.2 The upper bound calculated by the algorithm 3.7 run on a distance
matriz D is an upper bound of the minimum weight perfect matching calculated on

D.
Proof of Theorem 3.2 Informal proof.

1. Since we have more rows than columns, it is given that we can match every
column with one row. Since we only match rows that have a m; = false and
mark all matched rows with a m; = true (j is the row number), we make
sure that every row is matched with at most one column. = the algorithm
calculates a perfect matching.
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2. Since a perfect matching has to match exactly min(ny,ng) columns with rows,
both the minimum weight perfect matching and the perfect matching of algo-
rithm 3.7 consists of the same number of distances.

3. Both matchings consist of the same number of distances and the weight of the
minimum weight perfect matching is minimum by definition. = the distance
calculated in algorithm 3.7 is greater or equal to the distance of the minimum
weight perfect matching.

4. = algorithm 3.7 calculates an upper bound of the minimum weight perfect

matching.
[ |
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Figure 3.14: The upper bound of the matching in figure 3.12.
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3 Region Based Image Similarity Search




Chapter 4

Implementation

4.1 Component Framework and Libraries

In earlier work, the database research group at ETH Ziirich has developed a compo-
nent framework for multimedia data retrieval. The fundamental layer is a message
oriented middleware called OSIRIS (Open Service Infrastructure for Reliable and
Integrated proccess Support) that interconnects several autonomous components
(cf. figure 4.1). Processes define the flow of messages between the components (cf.
section 4.2). For this thesis some of the components had to be updated or added.
We describe each of them shortly in the following paragraphs. A more detailed
description of the implementation is given in the subsequent sections.

REE - Region Extraction Engine Initially there was no component to segment
images. Therefore a new component had to be added that extracts regions of a given
image. The component additionally provides segmentation data for the java applet
that we use to select regions on the frontend. A detailed description is given in
section 4.3.

IDX FEE
Indexing and Feature Extraction
Searching Engine
REP OSIRIS f REE
| D: H Region E i
Repository Middleware * nge

MetaDB Web
Meta Data Presentation
Repository

Figure 4.1: Overview on the component framework
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FEE - Feature Extraction Engine The feature extraction component only
provided the extraction of features for images with predefined, static regions. The
component has been extended to be able to extract features on the regions of a
segmented image. We have also integrated new feature types that take the spatial
extent and spatial position of regions into account. We describe the new feature
types in section 3.2. More detailed information on the implementation of the FEE
component can be found in section 4.4.

Web - Presentation The presentation component had to be updated to support
region based queries. A java applet has been developed for the purpose of select-
ing image’s regions on the user interface (cf. figure 4.2). The presentation related
developments are described in section 4.5.

. Ele Edi Wiew Search Go Bookmarks Tasks Help

.0 O 0 @ OoLwr

.| & Home ] Netscaps Q) Search @ shop £

Figure 4.2: The region selection java applet

IDX - Indexing and Searching Indexing and searching were based on the VA-
File for vectors and SigFile for signatures. The component had to be extended to
additionally support region based querying. Due to the flexible implementation, all
sort of simple and complex queries can be used with or without dynamic regions.
In section 4.6, we describe the component in more detail. An explanation of the
indexing structure is given in section 4.7. We discuss the implementation of complex
queries in section 4.8.

MetaDB - Meta Data Repository The Meta Data Repository stores all in-
formation in the system. It had to be updated to save the segmentation of images
and the extracted features.

The implementation of the components is based on a number of C++ libraries.
Some of them had to be newly created others had to be updated with new func-
tionality.
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Segmentation Library For supporting image segmentation, a new library has
been developed that encapsulates the functionality of segmentation algorithms. This
includes the segmentation of images and the creation of a nice representation of the
segmented image, e.g. by displaying lines at the region boundaries. For interaction
within the component framework, a compressed representation of the segmentation
function (which pixel belongs to which region, later referred to as "region map”) is
used.

Image Library The image library had to be slightly updated in order to support
dynamic regions (given as a region map) extracted outside the library. Until now,
the region map for the statically defined regions was built inside the library. The
creation of the region map is now done in the REE component.

Index Library The searching and indexing mechanism is implemented in the
Index library. Since the searching and indexing process had to be extended to sup-
port dynamic regions, new implementations had to be added to this library: A
file structure, similar to the VA-File | |, had to be implemented. It is called
DynRegFile and stores the feature vectors for each region of an image separately.
Nevertheless, we can access each image’s features with the same position informa-
tion as in the VA-File. Therefore, we can easily mix up VA-Files and DynRegFiles
in the search process.

Search algorithms have been implemented that support region based retrieval.
They are based on perfect matching (cf. section 3.3) to find the optimal match-
ing between regions. Two search strategies - presented in section 3.5 - have been
developed that minimize the number of perfect matching calculation.

4.2 Processes

The interaction between components is modelled using processes (workflows). A
process is graphically defined using a modelling tool called IvyFrame. To support
region based image retrieval a number of processes have been implemented. One
process fetches images from the repository an sends them to the REE component.
The component extracts the regions and returns a region map. The region map is
saved in the MetaDB. In the meanwhile the process sends the image and the region
map to the feature extraction component. This component extracts the features
and stores them into the MetaDB. Another process is used to run the query. It gets
the feature information of the query point from the MetaDB and sends the query
to the IDX component that finds and returns a list of similar images. This list is
then used to build the answer HTML document using the XSLT component.
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Input message Output message
ExtractRegions ResultRegions

Name of the segmentation algorithm | The region map

Type of the image The number of regions
Data of the image All input message
BuildRegionImage ResultRegionlmage
Region map The image with edges (jpeg-format)
Name of the segmentation algorithm | The applet region map
Number of regions All input message

Size of the result image

Type of the input image

Data of the input image

Table 4.1: The messages of the REE component

4.3 The Region Extraction Component

The region extraction component encapsulates the segmentation of images. It pro-
vides two methods: Fxtract regions takes an image and runs the segmentation al-
gorithm on it. It returns the segmentation and the number of regions. Build region
image takes an image and its segmentation and creates a new image on which the
segmentation boundaries are shown as white lines. It additionally creates code to
initialize the region selection java applet (described in section 4.5.2). A summary
of the messages of the REE component is given in table 4.1.

4.3.1 Segmentation

In general, the segmentation can be performed by any segmentation algorithm. In
the current implementation we use JSEG, which is further described in section
3.1.2. It builds a good segmentation of images in reasonable time without the need
of manual fine tuning. To process an image of 200x133 pixels, our REE component
needs less than 2 seconds on a Pentium 4 with 1,8 GHz. Since we had access to the
algorithm source code, it has been directly included.

As mentioned before, other algorithms can easily be integrated thanks to a
wrapping class hierarchy that encapsulates the implementation details of the al-
gorithm and provides the easy to use interface shown in figure 4.3. A concrete
segmentation algorithm has to provide a constructor that takes an image, performs
the segmentation and initializes the instance variables of the ImageSegmentation
class. The GetImageWithEdges method can be overwritten in order to provide a
individual presentation of the segmentation result. In the current implementation of
ImageSegmentation this method produces an image with white lines at the region
boundaries.
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ImageSegmentation

GetWeight() : Weight
GetNofRegions() : int

GetlmageWithEdges() : RGBImage

GetAppletMap() : String

GetScaledAppletMap(int w, int h, bool aspect) : String
GetREEMap() : Any

ImageSeglmpl

ImageSegimpl(Image i)

Figure 4.3: UML diagram of the ImageSegmentation class

4.3.2 The Region Map

The segmentation produced by the segmentation algorithm is stored in a pseudo
image in which we store the region number instead of the color for each pixel.
Internally, this pseudo image is implemented as an array of unsigned char. Since
this array maps the pixel positions (z,y) to the respective region number, we calls
this structure the Region Map.

Even though the region map is very efficient to test the region membership of a
point, it is not compact enough to be exchanged over the network and stored in the
database. We therefore use a compressed format of the region map externally. The
format is shown in figure 4.4. It starts with "REE1.0" as identifier followed by a list
of (int,unsigned char) pairs. The int value contains the number of occurrences
of the region defined in the unsigned char value. The end of the region map is
marked by a flag (int).

| REE1.0 | # occurences Region | # occurences Region | | # occurences ‘ Region | Endflag |

Figure 4.4: The REE1.0 format

The code to initialize the region selection applet (cf. section 4.5.2) is quite similar
but encoded as a string to avoid special characters in the HTML document. The
encoding is just a comma separated list of numbers. The order and semantic of the
numbers is the same as in the previously described format. Since a string has a
defined length, we don’t explicitly use an end flag.

In figure 4.5 an example picture and its transformations are shown: The region
map, the REE1.0 format and the format used for the region selection applet.

4.3.3 Image with Edges

To visualize the regions of an image, we have implemented an algorithms that draws
the region boundaries into the image. We call the resulting image tmage with edges.
In the current implementation the region boundaries are directly painted into the
image by a simple algorithm that linearly scans through the region map and writes
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Figure 4.5: Example of the region map and its compressed formats.

Figure 4.6: The image of figure 4.5 with edges.

white pixels whenever the actual pixel is in another region than the previous or
next one. The algorithm has to scan the map both horizontally and vertically. If we
take the example of figure 4.5, the fourth and fifth pixel of the first row, pixel one
to four of the second row, all pixels of the third row and the fourth and fifth pixel
of the last row would be painted white (figure 4.6).

4.4 The Feature Extraction Component

The existing feature extraction component had to be extended to support dynamic
regions. The existing feature extraction algorithms that have been designed for
static regions were reused without change. The feature extractor component FEE
is now able to take a region map in REE1.0 format (cf. section 4.3.2) as an optional
parameter. If this parameter is set, the extraction is performed on the regions of the
image. There are two different messages depending on the user’s choice to extract
one or more features. A summary of their parameters is listed in table 4.2.

4.4.1 Feature Data Formats

The extracted feature data is stored in two different ways. In the case of static or
no regions the extracted features are stored linearly in an array of real numbers.
This data structure is called floatvec. In the case of dynamic regions we have to
store the number of regions internally. Therefore a slightly different format is used
called dynfloatvec. It is also an array of real numbers but the first entry contains



4.5 The Presentation Component 53

Input message Output message
ExtractFeature ResultFeature
Name of the feature Type of the feature
Type of the input image Dimensionality of the feature
Data of the input image Value of the extracted feature
Region map (only for dynamic regions) All input data
Number of regions (only for dynamic regions) | Image information
Priority (optional) Statistics
ExtractMultipleFeatures ResultMultipleFeatures
Number of features Number of features
Names of the features Extracted flag (yes/no)
Type of the input object (image) Types of the features
Data of the input object (image) Dimensionality of the features
Region map (only for dynamic regions) Values of the features
Number of regions (only for dynamic regions) | All input data
Priority Object information

Statistics

Table 4.2: The messages of the FEE component

the number of regions. The feature values then follow directly, region by region. An
example of a floatvec array with four static regions and three dimensions and an
example of a dynfloatvec array with six dynamic regions and three dimensions is
shown in figure 4.7.

I04’\| 041| U73IU 52| 099| 0 QI 023‘ 045| 082I OQW‘ 094‘ UBWI

‘ 60 ‘IO 12‘ O42| OQSIUQU‘ 033| U.48IU.41‘ U41| O73|052‘ 099‘ U‘\ZI 023‘ 046‘ 0 SZI 0 91 0 94{ 061I

Figure 4.7: A floatvec with four static regions and a dynfloatvec with six regions,
both having three dimensions.

4.5 The Presentation Component

The presentation component has mainly been developed by Thomas Moscibroda
[ ]. It provides an easy to use interface for image similarity search. We de-
scribe the extensions made for region based image retrieval in section 4.5.1. For the
query interface interface we have developed a java applet that is used to select the
query regions. Details on the usage and implementation of the applet are given in
section 4.5.2.
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4.5.1 The Web Interface

The interface of ISIS is currently focused on the old similarity search on static
regions. It supports all sort of queries, i.e., atomic-, single-, multi- and complex-
queries for static regions (cf. section 2.3). Unfortunately, only atomic region based
queries are currently supported on the frontend.

ZAETH World - ExtractRegions.Result - Silvi's Internet Explorer

Fle Edit view Favorites Tools  Help

ek - = - () [2] 4| @seorch [HFavorites {Pveds (B | By S =f - 5| D |

Address [ ] http: /jsmulant 6700/Process/ExtractRegions?Session. [5=1025167619- 16202803180 bject  O1D=FE3A8Okject, MaxResol tion=300:300 =

Extract Regions 120.132.14.32:0700:Hyperfgent

[CategoryBrowse] [MavigationTree] [SimilaritySearch] [RegionExtraction] [PeopleFinder] [Settings] [Logout]

Object OID: 7638

&

Region Extraction Settings:

Regions.Regionimage

Similarity Search
Wiew Object Info
CalorLabCovISEG ColorHiste4 JSEG
& [ [ | |EE Localintranet

Figure 4.8: The web interface for region selection

In figure 4.8 you can see a screenshot of the query page. The user can click
on the image with edges and choose one or more regions by clicking on them. A
double click on the image selects all regions. This image is in fact the java applet
described in section 4.5.2. After choosing the regions, you can either click on the
ColorLabCovJSEG button or on the ColorHist64JSEG button depending on which
feature you want to use for the search. The search is then performed and a ranked
list of result images is returned and displayed in the same manner as it was done
with the former similarity search without dynamic regions (cf. figure 4.9).

4.5.2 The Region Selection Applet

The region selection applet is a java applet based on the java development kit version
1.1.x. This API is implemented in most of the web browsers. Applets are embedded
programs in HTML pages and are started and initialized using a special HTML
tag <APPLET>. As shown in figure 4.10, two parameters are needed to initialize the
region selection applet. The parameter imageName takes the CODEBASE relative URL
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ZAETH World - RegionsimilaritySearch.Result - Silvi's Internet Explorer

File Edit View Favorites Tools  Help

$aBack - = - ) (2] o | Qeoearch [Gravortes medn (4| EN- S = - B D

Address [] hitp: {jsimulant:9700/Process(RegionsimlaritySearch

&
&

o B
o B

0ID: 11356 oID: 14221 0ID: 14398 |

RegionSimilaritySearch.Result 120.13214.32:07004bmer Ay
[CategoryBrowse] [MavigationTree] [SimilaritySearch] [RegionExtraction] [PeopleFinder] [Settings] [Logout]
Query Reference OID: Add Keyword Multiple Query
8 Rank: 0/ Score: 1 Rank: 1 / Score: 0.7969 Rank: 2/ Score: 0.7914
@
A
-
Query Settings: rE
FeatureType Color abCowSEG 0lD: 7838 OlD: 13856 0lD: 18807
Query.MaxHits 15 Rank: 3 / Score: 0.7773 Rank: 4 f Score: 0.7765 Rank: 5 / Score: 0.7748

=

Figure 4.9: The result list

of the segmented image. The second parameter takes an applet specific region map

as described in section 4.3.2.

<APPLET CODE = "ch.ethz.dbs.regions.RegionSelectionApplet"

CODEBASE = "regions/classes/." WIDTH = 180 HEIGHT =

ALIGN
<PARAM NAME
<PARAM NAME

</APPLET>

middle NAME = "RegionSelectionApplet" >
"imageName" VALUE = "seg_darth.jpg">
"regionMap" VALUE

Figure 4.10: Initialization code for the region selection applet

"37,13,42,10,48,9,23, ...

185

|I>

In the initialization step of the applet, the image is read and displayed and
the region map is decompressed. Each time a user clicks on the image, the applet
determines on which region the click has been performed and either adds or removes

the region from the list of already selected regions.

4.5.3 Accessing Applet Information from HTML

It is often necessary to get information from applets. In our case we want to find out
which regions have been selected by the user. This can be done using a javascript
function in the HTML document. The applet must be named and then javascript
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<SCRIPT>
function getSelectedRegions() {
document .myForm.SelectedRegions.value
= document.RegionSelectionApplet.getSelectedRegions();
return true;
b
</SCRIPT>

<APPLET (...)
NAME = "RegionSelectionApplet" >
...

</APPLET>

<FORM METHOD="GET" ACTION="query.jsp" NAME="myForm"
onSubmit="return getSelectedRegions()">
<INPUT TYPE="hidden" VALUE="xxx" NAME="SelectedRegions">
<INPUT TYPE="submit" VALUE="submit">
</FORM>

Figure 4.11: Getting data from an applet

can access the applet using this name (in figure 4.11 it is RegionSelectionApplet).
Every public method of the applet can be accessed in this way. To set a hidden
value in a HTML form, we can use the onSubmit action. The called method (in
figure 4.11 it is getSelectedRegions) can then set this hidden value. Using this
mechanism, arbitrary interaction between the HTML document and the applet can
be implemented.

4.6 The Index Engine Component

The index engine component (IDX) encapsulates two main tasks. First, it provides
the management of the dynamic regions file which is the indexing data structure
used for searching on dynamic regions. The dynamic regions file is further described
in section 4.7. Second, it encapsulates the execution of similarity search on dynamic
regions. The messages of the IDX component are summarized in table 4.3.

4.6.1 Management of the Dynamic Region File

The management of the dynamic region file through the IDX component is split into
three messages. The BuildInderFiles message builds new and empty files to store
index data. Given the name of one or more features and their respective number of
dimensions, the component creates for each feature both, a new VA-File and a new
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Input message Output message

BuildIndexFiles IndexFilesBuilt
Number of features

Size of the overflow file
Name of feature i
Dimension of feature i
Default norm of feature i

UpdateFeatures FeaturesUpdated
OID OID
Position Position

Number of features
Name of feature i
Type of feature i
Value of feature i

DeleteFeatures FeatureDeleted
Position Position
Number of features
Name of feature i

Query Resultlist

Desired number of results Actual number of results
Minimum score OID, distance,

Distance combining similarity and rank

and correspondence function of result image i

Query plan

Query hints
Reference images and their features and selected regions

Table 4.3: The messages of the IDX component.

DynRegFile. This message must be called each time a new feature type is added to
the index.

For adding and updating feature values, a message called UpdateFeatures exists.
It takes the information for one or more features (feature name, data type, data,
object identifier) and inserts it at a given position into the index file. Depending
on the data type of the feature, it is either inserted in a DynRegFile (data type
dynfloatvec) or a VA-File (data type floatvec). If the position in the file is
already taken, the data at this position will be overwritten without notice.

To delete entries in all index files, you can use the DeleteFeatures message. It
clears an entry at a given position in one or more features. Using this message the
entry is cleared in both the DynRegFile and the VA-File.
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4.6.2 Querying

The most complex message of the IDX component is its Query message. Using
this message, queries on the previously constructed VA-Files and DynRegFiles can
be performed. In the message the number of result images, the minimum score
each image must achieve, the distance combining function and the correspondence
function can be set. If these values are not set, the component uses the defaults
defined in the configuration. To specialize the query, a search method (refer to table
4.4 for a list of valid values for this parameters) and the search range can be set.
The query can be further influenced using so called query hints. Using query hints
the user can define the exact behavior of the underlying search algorithm. The
currently available hints are listed in table 4.5.

SCAN | Linear scan through the index
NOA | Two phase region search (ToPhReSe)
SSA | One phase region search (OnPhReSe)

Table 4.4: Available search methods in the Query message

Algorithm Hint name Hint type
NOA UseElevator boolean
NOA CommuteUppBndSeperate | boolean
NOA UseBothBounds boolean

all with dynamic regions MatchingAlgorithm string
NOA with dynamic regions | CopyDists boolean
all with dynamic regions UsePenalty boolean

Table 4.5: List of query hints

The definition of the query point(s) of the similarity search is done by providing
one or more reference images. For each of them, one or more features that are either
DynRegFile or VA-File based can be supplied. Of course the index for these features
must be available to the component, i.e., they must have been built earlier using
the messages described in section 4.6.1.

To determine whether a feature is VA-File based or DynRegFile based, for each
feature a feature type that is either floatvec or dynfloatvec must be given. If the
query should be performed only on some regions of an image, the identifiers for the
selected regions must be delivered with the message. The component then converts
the provided feature vector to make sure that only the selected regions are included
in the vector (cf. figure 4.12). For a more fine-grained definition of the query point,
feature weights, distance combining functions, dimension weights and metrics can

be defined as desired.
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Figure 4.12: Conversion of the dynfloatvec data if only some regions are selected

4.7 The Dynamic Regions File

To support fast searching, an index of precalculated feature values is needed. For
static region and whole image features the ISIS system uses a sequential file called
VA-File (described in sections 1.2 and 2.4). For compatibility reasons and due
to its suitability for parallel execution, we have developed a similar file, called
DynRegFile, that can store the feature values of a variable number of regions for
each image entry.

In contrast to the VA-File, we always have to scan through the real data and
cannot use approximations, since we have to find a minimum weight perfect match-
ing to assign the regions of the query to the regions of the database image (cf.
section 3). Since finding a matching is computationally intensive, we have to min-
imize the number of runs of the matching algorithm. Using vector approximations
would require to calculate the matching for the lower bound, the upper bound and
the final solution, an approximated calculation of the bounds using a simpler al-
gorithm would either be incorrect or return too many candidates for the random
access phase. We therefore always scan through the real data and use the algorithms
described in section 3.5 to further minimize the number of matching calculations.

DynRegFile
5 g
7} i
.g) 5
g 3
VectorData MetaData

Figure 4.13: UML diagram of the DynRegFile.

4.7.1 Organization of the File

The DynRegFile is based on two classes developed earlier for the VA-File: MetaData
and VectorData. The VectorData class manages the storage of equal length vectors
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and their object identifier (OID) in a sequential vector file. The MetaData class
stores information about the distribution and correlation between the dimensions
of the vectors stored in an associated VectorData class. The MetaData instance of
each DynRegFile is associated to the VectorData instance that holds the region
vectors. To support updates without having to reorganize the file each time, we use
an overflow file of small, fixed size that should always remain in main memory. If
the overflow file is full, the information in this file is copied into the main region
vectors file (an UML diagram is given in figure 4.13).

Region 1 Region 2 Region 3 Region 4
» RN [ [ » |

5 vector )
/ /

-
|

NNINAlR|ala

Figure 4.14: The consecutive dynamic regions are mapped into one vector

The features of each region are stored as consecutive vectors in the underlying
vector file. All of them have the same object identifier (OID). When the user requests
a certain region vector, it is recreated "on the fly” by gluing together all consecutive
vectors with equal OID. In figure 4.14, a request for OID 1 is shown. To have the
same region numbering as in the region map, we have to assure that the i-th vector
with OID j contains the data for the i-th region of the region vector with OID j.

4.7.2 The ”Lazy” Position Cache

If we have complex queries (cf. section 3.4), it is necessary that the feature vectors
of all images are at the same position in every file. Above all, if we mix VA-File
based features with region based features, our search algorithms need to be able
to access objects at the same position in every index file. Since in the DynRegFile
each image needs more than one position (one for each region), we have to provide
a way to convert from our internal position to the external position and vice versa.

The solution built in the DynRegFile is to use a global conversion cache. In this
cache we have a mapping from external positions to the real positions in the vector
file. This cache is referred to as "lazy” position cache since it is not initialized until a
scan through the DynRegFile is performed. Earlier, the cache is marked as invalid.
If someone wants to access a vector directly by its external position without first
having scanned through the file, the cache is built at this time through an implicit
scan. If there are changes in the file, the cache may become invalid. Since our search
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algorithms always first scan through the whole file, we can be sure that the "lazy”
building of the position cache is preferable in most cases.

4.7.3 The Overflow File

The overflow file is organized as a memory mapped file, i.e. it is virtually held in
memory, physically sometimes swapped out on disk (managed by the operation
system). In our case we want to ensure a relatively small size of this file so that it
will always be mapped to memory and act as a buffer. The overflow file has a fix
maximum number of entries. Whenever the overflow file is full, a total reorganization
of the DynRegFile is performed (cf. section 4.7.5). The file is then empty and can
be refilled.

4.7.4 Methods of the DynRegFile

It follows a description of the methods used to manage the DynRegFile. We describe
what they do and how they are implemented.

Pos  Qid Data
o |1 -1 4
! -5 4 Overflow File
1 5 -5
1 5 -5 H
1 2 -1 6 s
2 5 6
2 -5 -3 2
2 |7 7 7
6
\j \j il
Delete(pos=0); Update(pos=0, cid=4) el
Delete(pos=1); Update(pos=1, 0id=6);

Figure 4.15: Delete and update operations on the dynamic regions file.

Create The Create method builds the vector file, the overflow file and the meta
data file and initialized them. It also sets the maximum number of entries in the
overflow file.

Add The Add method adds a given region vector at the end of the file. It does
not check if there are free entries that could be filled earlier in the file. The region
vector is split into a vector for each region and each of these vectors are stored in
the vector file in consecutive order. All of these vectors are labelled with the same
OID. We call them a vector group.

Delete The Delete operation is performed by invalidating the respective vectors.
This is done by deleting the first entry in the underlying vector file, resulting in a
vector that is empty and labelled with OID_UNKNOWN (-1). All OIDs of the vectors
of the same image are set to OID_FREEREGION (-5). By doing so, we can easily



62 4 Implementation

distinguish the beginning of a new vector group from the deleted vectors of a vector
group. The effect of delete operations is shown in figure 4.15.

Update The Update method first deletes the entry that is updated using the
Delete method. After that, the region vector is split into its parts as with the Add
method. These parts are filled into the now free slots in the vector file.

If the number of regions of the new image is equal to the number of regions of
the old image, we just replace the old values. If it is smaller, the unused vector slots
will remain unchanged (set to OID_FREEREGION, cf. figure 4.15). If the number of
regions of the new image is bigger than the number of regions in the old image,
obviously not all vectors fit into the old slots. In this case, we fill all slots until
the last free slot. This slot is filled with a reference to the overflow file with an
OID of OID_OVERFLOW (-3). The first entry of this vector’s data field is set to the
next vector’s position in the overflow file. Then the overflow file is filled with the
remaining vectors of the group starting at this position (cf. figure 4.15). If the
overflow file exceeds its maximum size during this update, a reorganization of the
whole file is triggered by the Update method (the reorganization is described in
chapter 4.7.5).

GetVector The GetVector method must first translate the external position to
the internal position using the ”lazy” position cache described in section 4.7.2. After
having found the right position in the file, the data is read, vector by vector until
the next vector has another OID. Of course we eventually have to switch to the
overflow file. Having read all vectors, we glue them together into one big region
vector that also includes the number of regions used.

4.7.5 Reorganize

The reorganization completely rebuilds the whole file. It first closes the working
file, renames it and re-opens it under this temporary name. For this to work, all
iterators on the file must have been closed, i.e., all references have to be deleted.
We therefore test if this is the case. Otherwise there are open file handlers and
the renaming of the files is denied by the operating system. In the next step, the
underlying meta- and vector files are recreated and refilled using an iterator on the
old file.

4.7.6 The Iterator

The iterator is used for the scan through the DynRegFile. It has to be aware of the
special structure of the DynRegFile. The implementation is similar to the one of
the GetVector method discussed in section 4.7.4. If we are at the end of the file, the
iteration is stopped. As described in section 4.7.2, with each step in the iteration
process, the mapping of external positions to internal positions is updated in order
to support random accesses after a scan.
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4.8 Region Based Complex Queries

4.8.1 The Class Hierarchy for Similarity Queries

The query implementation is encapsulated in three main classes: QueryExecution,
Query and DistanceFilter. Externally only the Query has to be instanced. It is
initialized with an index file (subclass of Index, e.g., class DynRegFile) and query
specific information like the query points, weights, etc.

On execution time, the query is specified with a collection of hints (defined
as subclasses of the ExecutionHint class) that determine the search algorithm
and other execution strategies. Using these hints, an instance of QueryExecution
and an instance of DistanceFilter are created. The QueryExecution’s Execute
method is then called that invokes methods on the DistanceFilter according to
a concrete search strategy. One set of methods of the DistanceFilter implements
the iteration on the index, the other set of methods encapsulates the bounds and
distance calculation.

[ DynRegFAtomicFilterHung |

[ DynRegFAtomicFilter|  [VAFAtomicFilter]
T
1
m - 1
ExecutorHint | [ DynRegFile| [VAFile] —  -------- it
T
. Y
DistanceFilter
fFirst{ start: int, end: int)
Indsx +Hext( )
+MoreDatal ): bool
+GetBoundsi uppBnd: real, maxDist: real =MAXREAL): real
<> +GetDistancel ): real

Query

+Execute( hints: Ref<Collection>}: Ref<RankedList>

+ExecutePlani plan: Ref<QueryExecution> ): Ref<RankedList o
3 6
JAY \G‘Eﬂ\h{ QueryExecution |

! [FExecutel): <RefrRankedList]

£\
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[ AtomicSimQueryDynReg | [ AtomicSimQuery |
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| TwoPhaseFilering | [ SequentialScan | [InterleavedFilering |

Figure 4.16: Excerpt from the class diagram

4.8.2 Implementation of Complex Queries

Atomic Similarity Query The atomic similarity query is spread through three
classes: AtomicSimQueryDynReg, the abstract class DynRegFAtomicFilter and its
implementing subclass DynRegFAtomicFilterHung.

The AtomicSimQueryDynReg class is mainly responsible for the creation of the
query plan and the initialization handling. The initialization is done by provid-
ing the feature values of the query point as an array of real numbers and the
number of regions. Optionally, weights for each dimension can be set. Inside the
AtomicSimQueryDynReg’s Execute method the provided hints are used to construct
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the right QueryExecution object and the right DistanceFilter. Currently, only a
distance filter using the Hungarian Algorithm is available.

The handling and iteration over the index data structure is encapsulated in the
DynRegFAtomicFilter class. Furthermore, the calculation of the distance matrix
(cf. section 3.5) is implemented in this class. In the search process we can take
advantage of a maximum distance that is provided by the search algorithms in
the QueryExecution subclasses. In the case of the Hungarian Algorithm we can
abort the distance calculation, if the lower bound of the minimum weight perfect
matching is above this maximum distance.

The Hungarian Algorithm and the calculation of its bounds (as described in
section 3.5.3) are encapsulated in the DynRegFAtomicFilterHung class. In a future
version, another subclass could be added to integrate other matching algorithms
into the search framework (e.g., IRM, cf. section 3.3.1).

Single Query Single queries are implemented in the CombinedFilter class. It
is a container of atomic queries. The results of the atomic queries are combined
using a distance combining function (class DistancingFunction). For region based
features, the CombinedFilterDynReg class is used to calculate a matching over a
number of features. Currently only an implementation for the Hungarian Algo-
rithm exists (CombinedFilterDynRegHung class). All sorts of single query can be
constructed using CombinedFilter and CombinedFilterDynReg.

Multi Query The multi query is implemented as a container of atomic queries.
The total distance is calculated using a DistancingFunction.

Complex Query The complex query is implemented as a container of single
queries. The total distance is calculated using a DistancingFunction.



Chapter 5

Results

5.1 Efficiency

The measurement has been performed on an Intel Pentium 4 with 1.8 GHz, 256
MB RAM, and a hard disk that has a mean data throughput of 50 MB/s. The
operating has been Microsoft Windows 2000 Server with Service Pack 2 installed.

CPU Time - Real Data WALL Time - Real Data
11,546 images, 64 dimensions 11,546 images, 64 dimensions

(o]
Phase Two Phase
Phase Phase Phase Phase
Copy Copy

Figure 5.1: Used time, real data

5.1.1 Real Data

The measurements in this section have been performed on a data set of 11,546 gen-
eral purpose images (CHARIOT collection). We have used a 64-bin color histogram
feature. The regions have been extracted using the JSEG algorithm (about 10 re-
gions per image). The evaluation has been performed on 100 images taken from the
data set (all regions selected).

The CPU time and the total execution time (WALL) are shown in figure 5.1.
In this evaluation, our algorithms are more than 2 times faster compared to a
sequential scan. They perform equally well, i.e., their execution time differs only in
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a few milliseconds. We can see that the number of result images has small influence
on the used time. Since we always scan the whole data set, the additional amount
of candidates seems not to influence the search time dramatically.

5.1.2 Random Data

Due to the limited availability of real data, a more detailed investigation on the
algorithms has been performed using synthetical data. The data has been generated
randomly. Each entry in the DynRegFile has an equal number of regions. The
evaluation has been performed on 100 images taken from the data set (all regions
selected).

In figure 5.2 we can see that the algorithms perform very well. They reduce the
used time (both CPU and WALL) by a factor of 2 to 3. The larger the data set
the better the algorithms perform. We can further see that the one phase algorithm
(OnPhReSe) outperforms the two phase algorithms (ToPhReSe), notably for larger
data sets. It seems that the additional load of the second phase cannot be gained
back by the smaller number of Hungarian Algorithm runs. Both versions of the
two phase algorithm (with and without keeping the distance matrix in memory)
perform almost equally.

WALL time CPU time
20 result images, 8 regions, 10 dimensions 30 result images, 8 regions, 10 dimensions
10 10
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s | [~—One Phase /‘ 8 | |~ Two Phase
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Figure 5.2: Used time, random data

In figure 5.3 the bounds are evaluated (logarithmic axes). The selectivity is
extraordinary good. It even increases with bigger data sets.

Figure 5.4 shows the influence of the number of regions. We can see that the used
time increases more than linearly for all algorithms. This is plausible since the com-
plexity of the Hungarian Algorithm is O(n?). The one phase algorithm (OnPhReSe)
performs best. One reason for this behavior is that the number of candidates in the
first phase of ToPhReSe increases faster than the number of candidates in the one
phase algorithm.
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Figure 5.4: Number of regions

All algorithms show a similar behavior with regard to the increase of dimension-
ality (cf. figure 5.5). This is a good property compared to tree-based approaches
that usually perform even worse than a scan with increasing dimensionality.

5.2 Effectiveness

The system’s effectiveness has been tested on a medium size image database of
11,546 general purpose images. The results are compared to the former CHARIOT
system that used five static regions. Only one feature (L*a*b* color covariance) and
one reference image have been used for this evaluation. The query set consisted of
37 randomly chosen images.

There were only four images on which the region based retrieval yielded a smaller
number of relevant images (11%). In 10 cases using all regions of the image led to
a worse result than using static regions (27%). It depends on the image how many
regions have to be chosen to yield the best results.

The experiments showed that the algorithms perform extraordinary well if only
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Figure 5.5: Number of dimensions

a portion of the image is relevant to the query. E.g., if we have an image with an
oasis in the desert and want to find a lake, we can just select the water to find
images in which water plays a role. The more the objects in the image differ, the
better is the retrieval quality. The user can therefore define his or her query more
precisely due to the more accurate segmentation.

One bad thing is inaccurate segmentation. First of all, when the same object
is segmented differently in distinct images. This occurs very often with images of
animals, notably when the image is take from a very near distance. JSEG seems
not to handle textured areas well enough. Perhaps the use of another segmentation
algorithm or a manual adjustment of JSEG’s parameters could decrease this prob-
lem. One example of inaccurate segmentation is given in figure 5.6. In one image
the deer is part of the region of the roadside (b) and in the other one it is part of
the street (c). The main color of these regions are completely different. For that
reason, the regions are not matched.

Figure 5.6: Example of different segmentation

We have found out that using all regions of the image sometimes leads to worse
results than using static regions. Additionally, the more regions you choose the
slower the matching algorithm is. The main problem with too many regions is that
it’s hard for the algorithm to match all regions. Notably if an object is split in
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two segments in one image when it’s in one region in another image. It’s therefore
often difficult to have all regions matched if the search is done on an over-segmented
image. In most cases, deselecting regions that are similar to already selected regions
leads to a better result.

We show the details of this evaluation in appendix C. Further examples can be
found in appendix B.

5.3 Summary

The system described in this thesis mostly returns better results than search with
static regions. It performs very well in finding parts of an image in other images.
The drawback is the increase in computation time compared to static regions, first
because we don’t use approximations, second because the dynamic combination of
the regions into one big vector is relatively expensive and third because we have to
calculate a matching of the regions.
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Chapter 6

Related Work

6.1 Blobworld

Blobworld is a system developed at UC Berkeley that treats images as an ensemble
of so called "blobs” that correspond to regions of similar color and texture [C'T1B99].
An example of an image and its blobworld representation is given in figure 6.1.

Figure 6.1: Image of a tiger and its blobworld representation

The query may be performed on one or more of the blobs of one or more query
images and is based on a 218 color histogram vector and two texture descriptors. At
query time, each query blob is associated to its best matching blob in the database
image. An overall score is calculated using some fuzzy-logic operators on the scores
of the matched blobs. Finally, the images are ranked on their overall score. The
system uses a R*-Tree [BIXS590] for indexing. To reduce storage and computation
costs, distance is calculated on an approximation of the real color histogram that
has been constructed using singular value decomposition.
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Name Blobworld

Institution UC Berkeley

Paper [CTBT99]

Demo URL http://elib.cs.berkeley.edu/photos/blobworld /start.html
Segmentation Blobworld

Features Color, texture

Matching Best match

Search paradigm | One region

Specials Features user adjustable

DB size 35,000

6.2 VisualSEEk

VisualSEEK of Columbia University is a content based image retrieval system that
also supports queries with spatial arrangements of color regions [SC90]. It indexes
the color regions of images using so called color sets. Their size and spatial loca-
tion (absolute and relative) is later used in the search process. The system uses a
quantized HSV color space to partition the image into regions of 116 similar colors.
In contrast to color histograms (see section 2.1.1), a color set does not save the rel-
ative amount of colors. This reduces the computational costs of the final distance
calculation between two color sets.

-
-

[,

Figure 6.2: Color-spatial queries within VisualSEEK [SC96].

Spatial information is stored as the position of the centroid of each region and
the bounding box of each region. A spatial quad-tree [Sam&4] is used to index the
region centroids and a R-Tree [Gut84] is used to index the bounding boxes. The
final similarity measure uses color similarity, relative location, area difference and
spatial extent (width and height) between regions. The matching is done by a simple
algorithm that is based on the addition of the weighted scores of the best region
matches. Examples of color-spatial queries are shown in figure 6.2.
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Name VisualSEEk

Institution Columbia University

Paper [ ]

Demo URL http://www.ctr.columbia.edu/VisualSEEk/
Segmentation n/a

Features Color sets, shape

Matching Weighted scores

Search paradigm | Spatial constraints

Specials Spatial queries

DB size n/a

6.3 Windsurf

The Windsurf system (Wavelet-Based Indexing of Images Using Region Fragmen-
tation) has been developed at University of Bologna, Italy [ ]. It uses the
k-means algorithm (with a validity function used to chose k) on color and wavelet
features to segment images. The querying is done on color and texture features
(derived from a Haar wavelet transform) of the k centroids of each image.

Region similarity is determined using a 37-D vector that includes size, wavelet
features of the centroid and four 3 x 3 covariance matrices. The assignment which
region in the query image is matched to which region in the database image is
defined to be a minimum weight perfect matching, i.e. each region of the query
image is assigned to exactly one region of each database image.

For the final search, two algorithms, a sequential and a index based, are pro-
posed that ensure the matching to be a minimum weight perfect matching. The
first algorithm called ERASE (Exact Region Assignment SEquential) linearly scans
through all images in the database and uses the Hungarian Algorithm (cf. sec-
tion 3.3.2) to determine the minimum weight perfect matching between the regions
of the query image and the regions of the database images. The second, index based
algorithm works on a M-Tree [ ], a R-Tree | | like indexing structure.
The algorithm is called A} and extends Fagin’s combining algorithm Ajg | ]
to ensure that the assignment of regions is a matching.

Name Windsurf

Institution University of Bologna
Paper [ ]

Demo URL no demo
Segmentation k-means

Features Color, Texture
Matching Perfect matching
Search paradigm | n/a

Specials Algorithms

DB size 2,000
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6.4 SIMPLIcity

The SIMPLIcity system developed at Stanford university uses the k-means algo-
rithm on blocks of 4x4 pixels to segment the image | ]. The k is chosen
adaptively. The search is done using L,U,V color features and the energy of high
frequency bands of the Daubechies-4-Wavelet transform as texture features. An au-
tomatic procedure can identify non-textured images, from which shape features are
extracted additionally.

The matching of the regions is done by an algorithm called IRM (integrated
region matching). It supports the matching of more than one region to another
in order to be tolerant to inaccurate segmentation (cf. section 3.3.1). Experiments
have shown the system to be robust to image alterations such as intensity vari-
ation, sharpness variation, color distortions, shape distortions, cropping, shifting,
and rotation.

Recently, IRM has been extended to a new measure called FIRM (fuzzily in-
tegrated region matching) | ]. Tt increases the insensitivity to inaccurate
segmentation. Each pixel of the image is not strictly assigned to one region, it has
a certain probability to belong to a region. The probability is based on the pixel’s
similarity to the region centroid. From this point of view, each region is a multidi-
mensional fuzzy set of pixels. An image is then a class of fuzzy sets. The similarity
measure is finally defined as the overall similarity between two classes of fuzzy sets.

Name SIMPLIcity
Institution Stanford University, Penn State University
Paper [ ]
Demo URL http://wangl4.ist.psu.edu/cgi-bin/zwang/regionsearch_show.cgi
Segmentation k-means
Features Color, Texture
Matching IRM
Search paradigm | Full image
Specials Semantic categories
DB size 200,000
6.5 NeTra

The NeTra system of UC Santa Barbara uses the so called edge flow algorithm
for image segmentation | |. For the newer system called NeTra II the JSEG
algorithm has been developed. The search is performed on color, shape and tex-
ture features. As shape features, the contour of the regions and a fourier-based
shape description are extracted. The texture feature extraction is based on Gabor
decomposition.

The indexing of texture and shape features is done using a balanced version of
the SS-tree. Color, shape and texture of each region are indexed separately. The
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combination of the results is performed by taking the intersection of the result lists
and ranking according to a weighted similarity measure. NeTra uses an implicit
ordering of the image features to prune the search space.

The NeTra system additionally supports spatial queries. The spatial information
is saved as metadata of each region. The coordinate of the region centroid and the
minimum bounding box are used to determine the position and extent of the regions.
A quad-tree | ] is used to index the centroids. The bounding boxes are indexed
by an R-tree [ |. The spatial query is defined using two rectangles. The inner
rectangle defines the part of the image that must be covered by the result region.
The outer rectangle must cover the whole region.

Name NeTra

Institution UC Santa Barbara

Paper [ ]

Demo URL http://vivaldi.ece.ecsb.edu/Netra
Segmentation JSEG

Features Color, texture, shape

Matching One to many

Search paradigm | One region

Specials Segmentation, Spatial query

DB size 2,600

6.6 Other Systems

Name n/a

Institution Microsoft Research China

Paper [ ]

Demo URL no demo

Segmentation JSEG

Features Color moments

Matching SLRI (Self-Learned Region Importance)
Search paradigm | n.n.

Specials Relevance Feedback

DB size 8,600
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6 Related Work

Name n/a
Institution Indian Institute of Technology
Paper [ ]
Demo URL no demo
Segmentation color quantization
Features Color sets, shape
Matching Threshold
Search paradigm | Full image
Specials
DB size 320
Name n/a
Institution Hiroshima City University
Paper [ ]
Demo URL no demo
Segmentation Texture clustering
Features Texture
Matching Nearest Neighbor
Search paradigm | One Region
Specials
DB size 1,750




Chapter 7

Conclusions and Future Work

In this thesis, a flexible and fast region based image retrieval system has been
developed that is able to cope with huge image databases. The experiments have
shown a remarkable increase of retrieval quality compared to the former system that
only supported static regions. Due to the extendable implementation, newer (and
probably better) segmentation and matching algorithms can be integrated into the
system. A detailed analysis of a set of segmentation and matching algorithms could
lead to a more powerful system with respect to retrieval quality. Since this is a first
time implementation of region based image similarity search in ISIS there is a wide
area of future development tasks.

7.1 Segmentation and Feature Extraction

Besides the use of other algorithms, the current algorithms could be extended to
support overlapping regions. It is often not clear where the actual boundaries of
a region are and if two regions should be merged into one or not. By supporting
overlapping regions, we could provide both a coarse and a fine grain segmentation
for the same image. In figure 7.1 this is shown for a picture with two pipelines. Four
possible overlapping segmentations are shown: only a part of one pipeline (yellow),
one pipeline (red), both pipelines (blue) and both pipelines including the basement
(green). The straightforward solution for our system would be to extend the JSEG
algorithm. Suematsu et al. have recently implemented another approach following
the same direction [ ]. They segment the image hierarchically and introduce
a sort of containment semantic.

Similarly, the idea of fuzzy segmentation as proposed in | | could be
implemented. In this case we postulate that every point of the image belongs to
every region but only with a certain probability. The resulting feature value for
each region is calculated by taking these probabilities as weights for each pixel.

At the query frontend we could imagine to support the interactive segmentation
of the image. The user could draw the extent of the regions he is interested in directly
on the picture and in this way could interactively select what he really wants. The
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Figure 7.1: Four overlapped segmentations of the pipelines.

features of the selected parts of the image would then be directly extracted by the
FEE component and used for querying the database. It would not be certain that
the query image itself (if it is present in the database) has a high rank, e.g., if it is
segmented in a completely different way.

The feature extraction component could be extended to support more shape
features. In textured images shape features usually aren’t semantically important.
But since in the case of regions based image retrieval we have a (hopefully good
enough) segmentation that really detects object boundaries, the shape of the regions
could be interesting. E.g., it is sometimes desired to match a region with a red ball
(shape = circle) with a region with a blue ball (also shape & circle) rather than
a region with a red car (shape = rectangle). One simple shape feature would be
to extract the bounding box of each region. A more complex extraction algorithm
could extract three or more "interest points” (i.e. points where the differentiation
of the region’s contour line is near to zero) for each region. The better two sets of
“interest points” match, the more similar the shape of two regions is. More shape
features for region based image retrieval are described in [PGBO1].

Figure 7.2: Modelling the relative positions in an image

Another extension in this area would be to take the relative positions into ac-
count. So called spatial constraints could be set (e.g. as a special sort of predicates).
We could then explicitly distinguish between an image with a red region on the left
and a green region on the right and an image with a red region on top and a green
region on the left bottom. In the image in figure 7.2, we could for example explic-
itly model that the forest is above the snowfield, that the boy stands left of the
old man and that the head is above the body. A special query language similar to
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the suggestions made in [SC96] could be developed that can give extended query
definement abilities to the user.

7.2 Indexing and Searching

In the indexing and searching component, special support for spatial constraints
could be implemented that directly affect the matching between the regions. Us-
ing these constraints, the Hungarian Algorithm could probably stop earlier and
therefore the overall speed of the system could be improved.

Another approach to decrease the complexity of the calculation of a minimum
weight perfect matching would be to do all calculations directly in the feature space.
Currently, we first calculate all distances between the region features and then cal-
culate the matching. It might be faster to find a matching in the feature space.
Performing a k-nearest neighbor search for each query region followed by a combin-
ing phase to find the actual matching would be the straight forward algorithm to
solve the problem, but perhaps some additional optimizations could be introduced.

Since we seldom have a perfect segmentation, an adaptive merging of regions
during the query step could be introduced. In this case two or more regions would
be adaptively merged if the resulting matching distance is smaller. It is certainly
not trivial to find an efficient algorithm that can detect such cases and optimize
them. An approximation to this behavior would be the precalculation of the feature
value for glued regions and simply running the hungarian algorithm on all regions
and combinations of regions. Using this approximation, it could occur that different
regions of the query image are assigned to the same region of the database image.
To visualize this idee you can look at figure 7.3. The query (a) consists of two
regions: a man and an US-flag. Unfortunately the image in our database (b) is
over-segmented and has four regions for the flag and two for the man. Since this
leads to a completely different color distribution of the regions it would be unlikely
that this database image would be considered relevant. But if the search algorithm
would adaptively merge the four regions of the flag into one region and the two
regions of the man, the image would certainly be returned with a high rank.

Figure 7.3: Adaptive merging. (a) The query, (b) the over-segmented image in the
database, (c) the database image after an adaptive merge.

It would be interesting to know how important the calculation of a minimum
weight perfect matching is in practice. A precision- and recall analysis of the current
implementation compared to always taking the lower or upper bound matching
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could give an answer to this question. If the results are comparable good, the use
of vector approximation could be considered since the optimization of CPU costs
would not be a main issue anymore.

In the current system the relevance feedback mechanisms do not care about the
regions. We could extend the relevance feedback methods to find out which region
is more important and how the importance of a feature is in one region and in
another. A first approach in this direction is described in | -

7.3 Improvements of the Code

In the current implementation of the DynRegFile, a big amount of memory allo-
cation and copy operations make the search process unnecessarily slow. It would
therefore be of great benefit if the support of dynamic regions would be handled at
a lower system level, i.e., if the region vectors would be stored natively in a specially
designed region vector file instead of using the legacy vector file class.
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Motivation

In der Datenbankgruppe der ETH wurde in den letzten Jahren ein Prototyp zur
Bildsuche entwickelt. Dabei wird die Ahnlichkeit der Bilder untereinander auf-
grund inhaltlicher Merkmale (z.B. Farbe) ermittelt. Bislang wurde jedes Bild in
seiner Gesamtheit bzw. in einer festgelegten Anzahl statischer Regionen analysiert.
Beispielsweise wiirde ein Bild mit Wald in der linken Bildhélfte und einem See in
der rechten Bildhlfte nur eine geringe Ahnlichkeit zu einem seitenverkehrten Pen-
dant haben. Als Losung bietet es sich an, die Bilder in dynamische Regionen zu
unterteilen, die ungefihr den Objekten im Bild entsprechen. Um die Ahnlichkeit
zweier Bilder zu bestimmen, sucht man nach méglichst guten Ubereinstimmungen
zwischen den Regionen der Bilder beziiglich der gegebenen Merkmale.
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Aufgabenstellung

Ziel dieser Diplomarbeit ist es, den Prototyp zur Bildsuche um ein regionenbasiertes
Suchverfahren zu erweitern. Die Aufgabenstellung umfasst im Einzelnen die folgen-
den Tétigkeiten:

e Einarbeitung
Einlesen in die Literatur. Welche Verfahren zur regionenbasierten Ahnlichkeits-
suche existieren bereits? Wo liegen die Gemeinsamkeiten und Unterschiede?

e Extraktion von Bildregionen
Ein Algorithmus zur Segmentierung von Bildern soll in eine Systemkom-
ponente eingebettet werden, die in Zusammenarbeit mit den vorhandenen
Merkmalsextraktoren das Zerlegen eines Bildes in seine Regionen und eine
anschliessende Extraktion der Merkmale pro Region erlaubt.

e Erweiterung der Suchfunktionalitét

Die Bilddhnlichkeitssuche soll so erweitert werden, das sie auf den Merkmals-
daten der dynamischen Regionen durchgefithrt werden kann. Bislang hatten
diese Daten in Abhéngigkeit vom Merkmalstyp fiir jedes Bild eine einheitliche
Lénge. Die Datenstrukturen miissen dahingehend erweitert werden, dass sie
den effizienten Zugriff auf die Datensétze variabler Lange erlauben. Weiterhin
muss das Sucheverfahren selbst erweitert werden, damit die beste Uberein-
stimmung zwischen den Regionen zweier Bilder ermittelt werden kann.

e Einfaches Frontend zur Regionensuche
Zur Demonstration der neuen Fihigkeiten des Systems soll das Frontend so
erweitert werden, dass der Benutzer Regionen eines Bildes spezifizieren kann,
nach denen er suchen mochte.

Bei dieser Arbeit geht es die Umsetzung eines vielversprechenden Ansatzes zur
Bildsuche. Es ist anzunehmen, dass der erweiterte Prototyp Suchresultate hoherer
Qualitdt liefern wird, als bislang. Sofern es im Rahmen der Arbeit moglich sein
wird, sollen erste Experimente die Leistungsfahigkeit des Systems untersuchen.
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Examples

B.1 Bird Example

The task in this example was to find a bird walking on grass. We have selected the
region of the body of the bird and the grass region that is least blurred. The result
is shown in figure B.1. Compared to the result of the query with five static regions
we have found two more bird images. One image (OID 14581) cannot be found by
an algorithm that uses static regions since it is in landscape format. In the other
image, the bird is at the image’s border and hence not in the same region as the
other images (OID 14583).

Rank: 1/ Score: 0.882 Rank: 2 / Score: 0.8545 Rank: 3/ Score: 0.8372
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Figure B.1: Region based query using two regions
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Rank: 0/ Score: 0.8183

0OID: 14582

Rank: 1 / Score: 0.6808 Rank: 2 / Score: 0.6771 Rank: 3 / Score: 0.6394 Rank: 4 / Score: 0.6271
@
#
4
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0OID: 14585 0ID: 14588 0ID: 14579 0ID: 14589
Rank: 5/ Score: 0.6028 Rank: & / Score: 0.5964 Rank: 7 / Score: 0.595 Rank: 8 / Score: 0.5898
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0ID: 14587 OID: 16965 0ID: 11656 0ID: 11620

Figure B.2: Region based query using five static regions

B.2 Building Example

This example demonstrates how the algorithm can find similar images even though
the perspective of the photograph is totally different. We are searching for a building
as highlighted in figure B.3 (a). The system returned two images that both contain
the selected building (cf. figure B.3). In image (c) it is just photographed from a
longer distance (with many surrounding regions) and in image (d) from a nearer
distance. The other images returned do not contain this building and are therefore
not shown in the figure.

Rank: 0/ Score: 1 Rank: 1/Score: 0.8249 Rank: 8 / Score: 0.7681

A % #

0OID: 10053 0ID: 10054 0ID: 10058
(b) () (d)
Figure B.3: Finding a building.

B.3 Worker Example

In this example we look for a person in the database that has a red shirt and gray
pants. In contrast to the query on five static regions, we find two other pictures on
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which this person is working. The query and its results are shown in figure B.4.

Rank: 0/ Score: 1 Rank: 1/ Score: 0.859 Rank: 2 / Score: 0.8078

o |

(b) () ()

Figure B.4: Finding a person.

B.4 Water Example

This example shows one benefit of dynamic regions in contrast to static regions:
The orientation of the picture is not important. In contrast to the result to a query
with five static regions, the system described in this thesis also finds an image that
is taken from another perspective. An example for this is shown in figure B.5. With
region based image retrieval we do not only find images (a), (¢) and (d) but also
image (b) where the water flows from right to left (instead of left to right as in the
other images).

Rank: 0 / Score: 1 Rank: 1/ Score: 0.8809 Rank: 2 / Score: 0.833 Rank: 3/ Seere: 0.8121

(a) (b) (c) (d)

Figure B.5: With region based image retrieval we also find mirrored images.
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Appendix C

Evaluation

In this section the exact results of the evaluation on 38 queries are shown. The
images have been chosen randomly and their content has been described. After
that the queries have been performed. The selection of regions has been tried out
for different constellation and the best has been taken. The results are listed in
table C.1. The numbers stand for the number of relevant images in the top ten
results.
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OID | Description

19178 | yellow flowers

17350 | bird

14315 | sunset

7841 | bridge over river
15078 | a group of persons
15036 | sign in the desert
10007 | dishwasher

10646 | man with snow

11844 | wild cat

16912 | pipeline

10696 | fish in aquarium (swarm not counted)
14345 | diver

14300 | white rock

19094 | white car

18230 | mechanic

8451 | researcher

10384 | river

19264 | highway

14448 | construction site and building workers
13418 | red scaffold

9807 | people under a sun shade
7843 | something

13909 | edge of the forest
8916 | gravel rowing boat
10605 | factory

16744 | deer crossing the road
12179 | blue truck

12892 | ambulance

10823 | skyscrapers

15074 | presentation

19057 | dog

19167 | inundation

17276 | barrage

8241 | green machine

~
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~
Y
~

(3) | (4) | (5)

\V)

—_
o

8878 | lake with green surroundings
9659 | owl
9653 | owl with black background
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Table C.1: Effectiveness evaluation. (1) 5 static regions, (2) All regions, (3) 1 region,
(4) 2 regions, (5) 5 regions selected.
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